Posts

Showing posts from August, 2020

How to use Linear Combinations

Image
LINEAR COMBINATIONS          Let V  be a vector space over a field K . A vector v  in V  is a linear combination of vectors  u ₁ + u ₂ + ⋯+ u ₙ  in V  if there exist scalars a ₁, a ₂ , ⋯, a ₙ  in  K   such that                                                             v =  a 1 u 1 + a ₂ u ₂ + ⋯+ a ₙ u ₙ Alternatively, v   is a linear combination of vectors  u ₁ + u ₂ + ⋯+ u ₙ     if there is a solution to the vector equation                                                 v =  x 1 u 1 + x ₂ u ₂ + ⋯+ x ₙ u ₙ where x ₁ + x ₂ + ⋯+ x ₙ   are unknown scalars.   Linear Combinations in  Rⁿ          The question of expressing one vector in  Rⁿ  as linear combination of other vector in  Rⁿ   is equivalent to solving a nonhomogeneous system of linear equations, as illustrated below. a)   Suppose we want to express v = (3, 7, -4)  as a linear combination of the vectors u 1  =  (1, 2, 3),  u 2  =  (2, 3, 7),  u 3  =  (3, 5, 6)    Solution:          We seek scalars x ,