How to use Linear Combinations

LINEAR COMBINATIONS

         Let be a vector space over a field K. A vector in is a linear combination of vectors u+u+⋯+u in if there exist scalars a₁,a,⋯,a in K such that 

                                                v = a1u1+au+⋯+au

Alternatively, v is a linear combination of vectors u+u+⋯+u  if there is a solution to the vector equation

                                                v = x1u1+xu+⋯+xu

where x+x+⋯+x are unknown scalars.

 

Linear Combinations in Rⁿ

         The question of expressing one vector in Rⁿ as linear combination of other vector in Rⁿ is equivalent to solving a nonhomogeneous system of linear equations, as illustrated below.


a)  Suppose we want to express v = (3, 7, -4) as a linear combination of the vectors

u= (1, 2, 3), u= (2, 3, 7), u= (3, 5, 6) 

 

Solution:

         We seek scalars xyz such that  v = x1u1+xu+⋯+xu, that is,

                    

            Reducing the system to echelon form yields

            Back-substitution yields the solution

                                                

            Thus,







Comments

Popular posts from this blog

How to use Triangle's Rule in Finding Determinant of a 3x3 Matrix

How to use Co-factor Expansion along the Column in Finding Determinant of a 3x3 Matrix